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Risk Constraints Planetary Robots

e Planetary missions have a risk
posture which curtails directions
for exploration.

e Scientific value is inversely
proportional to terrain safety.

e But we don’t know what the
terrain is like until we get there!

Image source: Robotic Systems Lab
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Conflicting Priorities:
Killing the robot is bad! vs Learning is good!

Image source: Robotic Systems Lab



Can We Sample Without Sending the Robot?

e Yes! Small, remotely
deployed daughtercraft
containing sensors

e E.g.,, NASAAmes
(Michael Dille and Uland
Wong) has developed
PHALANX, a deployable
sensor system for
mobile robots

M. Dille et al. PHALANX: Projectile Hordes for Advanced Long-term
& Networked Exploration, IEEE Aerospace Conference (2020).



PHALANX - A Brief Overview

Extends robot sensing reach

Small sensor packages
o <250g, < 75mm diam

Different sensor types
o Heterogeneous,
mission-specific tailoring

Payload of 25-50 sensors

Mortar delivery system
o 10-100m deployment range




But....how do you choose?

Need to play off the best deployment of sensors against your expectation of what
the world looks like.

- Simulate risk and observations from precursor (e.g. pre-mission) data.
- React in situ as needed.



Concept of Operations - Collect Precursor Data
Science Utility Safety




Concept of Operations - Identify Valuable Samples
Science Utility Safety




Concept of Operations - Plan a Tour
Science Utility Safety
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Concept of Operations - Plan a Tour
Science Utility Safety
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How do we make good decisions?

IGNORE

NAVIGATE < ) , ( ) ; ( ) ,

DEPLOY

Make the best decision now Assuming we behave optimally later



How do we make good decisions?

IGNORE
NAVIGATE " Ew
DEPLOY
Make the best decision now Given average return over future deployments with

sampled future terrain safety.



Simulation for Algorithm Comparison

100 Locations

Probability of hazard ~ Uniform(0,1)

12 Classes of objects (science targets)
o Modelling underlying distribution(s)

Baselines:
o Random: Sample unsafe locations on coin flip 1 :
o Greedy: Sample unsafe locations as encountered &k - ' - G
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Performance - Uniform Abundance

Class Abundance - Uniform
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Performance - Exponential Abundance

Class Abundance - Exponential Distribution
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Performance - Dominating Class

Class Abundance - Dominating Class
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Conclusions

1. As good or better for tested scenarios
2. Useful formalism for decision-making/mission-planning

3. Room for improvement

a. Future estimated value implementation is naive
b. On-line updating of safety estimate



Contact: michael.furlong@us.kbr.com
michael.dille@nasa.gov
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